Images and Inverse images in the Category of Fuzzy groups

P.Vijayalakshmi, Dr. P. Alphonse Rajendran

Abstract— Ever since fuzzy sets were introduced by Lotfi Zadeh in the year 1965 [1], many algebraic structures were introduced by many authors. One such structure is fuzzy groups introduced in [2] and [3]. In [4] the authors introduced a novel definition of fuzzy group homomorphism between any two fuzzy groups and gave element wise characterization of some special morphisms in the category of fuzzy groups

Index Terms – Epimorphism, Epimorphic images, Fuzzy sub group, Fuzzy group homomorphism, Images, Inverse Images, , Monomorphism, Strong Monomorphism

----- 🔶 ------

1 INTRODUCTION

In this article we prove that the category of fuzzy groups has epimorphic images and inverse images. We begin with the following definitions.

In [3], Azriel Rosenfeld has defined *a fuzzy subgroup* μ on a group S where $\mu: S \rightarrow [0,1]$ is a function as one which satisfies $\mu(xy^{-1}) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in S$. Equivalently by proposition 5.6 in [3]

(i) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ (ii) $\mu(x^{-1}) = \mu(x)$

We take this as the definition of a fuzzy group. However in our notation and terminology for fuzzy sets a *fuzzy group* in this article will be a pair

$$(X, \mu) = \{(x, \mu(x)) | x \in X, \mu : X \to [0,1] \text{ is a func-tion} \}$$
, where

tion } , where

(i) X is a group and (ii) $\mu(xy^{-1}) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$

Let (X, μ) and (Y, η) be fuzzy groups. Then a *fuzzy group homomorphism* from (X, μ) into (Y, η) is a pair (f, α) where $f: X \to Y$ is a group homomorphism (in the crisp sense) and $\alpha: \mu(X) \to \eta(Y)$ is a function such that $\alpha \mu = \eta f$. Equivalently $(f, \alpha): (X, \mu) \to (Y, \eta)$ is a fuzzy group homomorphism (or fuzzy morphism) if $f: X \to Y$ is a homomorphism (crisp) of groups and the following diagram commutes.



 P.Vijayalakshmi, Research Scholar, Periyar Maniammai University, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu, India, Mobile no:9790035790.

 Dr. P. Alphonse Rajendran, Former Prof. (Dean SHSM), Department of Mathematics, Periyar Maniammai University, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu, India. Mobile no:9790035789 **2 DEFINITIONS**

Definition 2.1

A fuzzy morphism $(f, \alpha): (X, \mu) \to (Y, \eta)$ is called a **monomorphism** in \mathcal{F} if for all pairs of fuzzymorphisms (g, β) and

fig. 1

 $\begin{array}{l} (h,\delta):(Z,\theta) \to (X,\mu), (f,\alpha)(g,\beta) = (f,\alpha)(h,\delta) \text{ im-}\\ \text{plies that } (g,\beta) = (h,\delta) \{(\text{ i.e}), (f,\alpha) \text{ is left cancellable in }\\ \mathcal{F}\}. \end{array}$

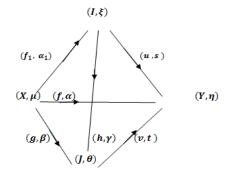
A monomorphism is called a **strong monomorphism** if (f, α) is injective.

Definition 2.2

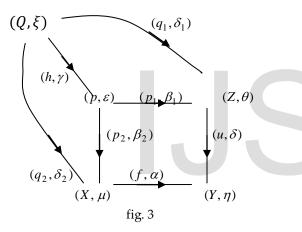
Let $(f, \alpha): (X, \mu) \rightarrow (Y, \eta)$ be a given fuzzy group homomorphism and $(u, \delta): (I, \xi) \rightarrow (Y, \eta)$ be a fuzzy subgroup of (Y, η) . Then (I, ξ) is called an *image* of (f, α) if

(i) $(f, \alpha) = (u, s)(f_1, \alpha_1)$ for some fuzzy group homomorphism $(f_1, \alpha_1) : (X, \mu) \to (I, \xi)$

(ii) If $(v, t): (J, \theta) \to (Y, \eta)$ is any fuzzy subgroup of (Y, η) such that $(f, \alpha) = (v, t) (g, \beta)$ for some fuzzy group homomorphism $(g, \beta): (X, \mu) \to (J, \theta)$ then there exists a fuzzy group homomorphism $(h, \gamma): (I, \xi) \to (J, \theta)$ such that $(u, s) = (v, t) (h, \gamma)$.



Definition 2.3 : Let (f, α) : $(X, \mu) \rightarrow (Y, \eta)$ be a given fuzzy group homomorphism and (u, δ) : $(Z, \theta) \rightarrow (Y, \eta)$ be a fuzzy sub group. An object (P, ϵ) in \mathcal{F} is called the inverse image of (Z, θ) by (f, α) if there exists morphisms (p_1, β_1) : $(P, \epsilon) \rightarrow$ (Z, θ) and (p_2, β_2) : $(P, \epsilon) \rightarrow (X, \mu)$ such that (i). $(u, \delta)(p_1, \beta_1)$: $(f, \alpha)(p_2, \beta_2)$ and (ii). if there exists morphisms (q_1, δ_1) : $(Q, \xi) \rightarrow (Z, \theta)$ and (q_2, δ_2) : $(Q, \xi) \rightarrow (X, \mu)$ such that $(u, \delta)(q_1, \delta_1) = (f, \alpha)(q_2, \delta_2)$ then there exists a unique fuzzy group homomorphism (h, γ) : $(Q, \xi) \rightarrow (p, \epsilon)$ such that $(p_1, \beta_1)(h, \gamma) = (q_1, \delta_1)$ and $(p_2, \beta_2)(h, \gamma) = (q_2, \delta_2)$.



Remark 2.4:

(a) Since (I,ξ) and (J,θ) are fuzzy subgroups of (Y,η) , (u,s) and (v,t) are strong monomorphisms.

(b) From (ii) we have vh = u is injective and $t\gamma = s$ is also injective, both *h* and γ are injective. Thus (h, γ) is a strong monomorphism.[definition of strong monomorphism]

(c) Since (v, t) is a (strong) monomorphism. (h, γ) with the above property in (ii) is unique.

A category \mathcal{A} is said to have images if every morphism in that category has an image. Moreover, if in the factorization $(f, \alpha) = (u, s)(f_1, \alpha_1)$, the morphism (f_1, α_1) is always an epimorphism, then the category \mathcal{A} is said to have epimorphic images. We now prove

3 THEOREMS

Theorem 3.1: The category of fuzzy groups has epimorphic images.

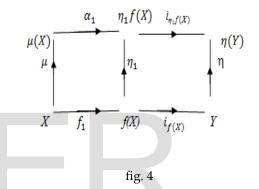
Proof. We prove the theorem via two lemmas.

Lemma 3.2: The category of fuzzy groups has images.

Proof. Let $(f, \alpha) : (X, \mu) \rightarrow (Y, \eta)$ be any given fuzzy group homomorphism.

Let
$$f(X) = \{ \frac{f(x)}{x \in X} \}$$
.

Define
$$f_1: X \to f(X)$$
, as $f_1(x) = f(x)$ for all $x \in X$.
 $\eta_1: f(X) \to [0, 1]$ as $\eta_1 f(x) = \eta f(x)$ and
 $\alpha_1: \mu(X) \to \eta_1 f(X)$ as $\alpha_1 \mu(x) = \eta_1 f_1(x) = \eta f(x)$



Let $i_{f(X)}: f(X) \to Y$ and $i_{\eta_1 f(X)}: \eta_1 f(X) \to \eta(Y)$ be the respective inclusion maps. Then $(f(X), \eta_1)$ is a fuzzy subgroup of (Y, η) . In fact $(i_{f(X)}, i_{\eta_1 f(X)})$ is a strong monomorphism.

Claim. $(i_f(X), i_{\eta_1}f(X)): (f(X), \eta_1) \to (Y, \eta)$ is an image of (f, α) .

Now from the definitions, it follows that for all $x \in X$, $i_{f(X)} f_1(x) = i_{f(X)} f(x) = f(x)$

so that $i_{f(X)} \circ f_1 = f$. Similarly $i_{\eta_1 f(X)} \circ \alpha_1 = \alpha$ so that $(i_{f(X)}, i_{\eta_1 f(X)}) (f_1, \alpha_1) = (f, \alpha)$.

Thus condition (i) of definition 1.2 is satisfied.

Suppose there exists a morphism $(g, \beta):(X, \mu) \rightarrow (J, \theta)$ and a strong monomorphism $(\mathcal{G}, t):(J, \theta) \rightarrow (Y, \eta)$ such that $(\mathcal{G}, t)(g, \beta) = (f, \alpha)$ (1)

Define
$$h: f(X) \to J$$
 by $h f(x) = g(x)$ (2)

Then h is well defined.

For
$$f(x_1) = f(x_2)$$

 $\Rightarrow \Im g(x_1) = \Im g(x_2)$ [from (1)]
 $\Rightarrow g(x_1) = g(x_2)$ [since \Im is injective]

IJSER © 2015 http://www.ijser.org Moreover Since $g: X \to J$ is a homomorphism of groups,

h is also a homomorphism of groups.

lso for all
$$x \in X$$
, $\mathcal{G}hf(x) = \mathcal{G}g(x)$ (by (2))
= $f(x)$ (by (1))
 $\Rightarrow vh = i_{f(X)}$ (3)

Again we define $\gamma: \eta_1(f(X)) \to \theta(J)$ as follows Given $x \in X$, $\eta_1 f(x) = \eta f(x)$

$$= \eta vg(x) \text{ (by (1))}$$
$$= t \theta g(x) \text{ [since } \eta \vartheta = t \theta \text{]}$$

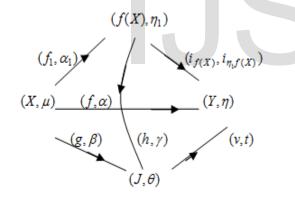
Hence for each $x \in X$, there is a unique $\theta g(x) \in \theta(J)[$ since t is injective] such that $\eta_1 f(x) = t \theta g(x)$ (4) So define

 $\gamma : \eta_1 f(X) \to \theta (J) \text{ by } \gamma \eta_1 f(x) = \theta g(x)$ (5) [$\gamma \text{ is well defined since } \eta f(x_1) = \eta f(x_2)$ $\Rightarrow \eta \vartheta g(x_1) = \eta \vartheta g(x_2)$ $\Rightarrow t \vartheta g(x_1) = t \vartheta g(x_2)$ $\Rightarrow \theta g(x_1) = \theta g(x_2)$]

Moreover for all $x \in X$, $\gamma \eta_1 f(x) = \gamma \eta f(x) = \theta g(x)$ [definition of γ]

=
$$\theta h f(x)$$
 [since $g = h f$]

and so $\gamma \eta_1 = \theta h$. Thus $(h, \gamma): (f(x), \eta_1) \to (J, \theta)$ is a fuzzy group homomorphism.



Finally for all
$$x \in X$$
, $t\gamma(\eta_1 f(x)) = t\theta g(x)$
[by (5)]
 $= \eta \vartheta g(x) [sin ce t\theta = \eta v]$
 $= \eta f(x) [sin ce vg = f]$
 $= \eta_1 f(x)$
which implies that

 $t\gamma = (i_{f(x)}, i_{mf(x)}) \tag{6}$ from (3) and (6) we have

$$(v, t)(h, \gamma) = (i_{f(x)}, i_{mf(x)})$$

Thus condition (ii) of definition 1.2 is also satisfied.
Thus the category of fuzzy groups say \mathcal{F} has images

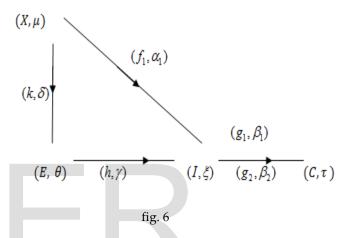
Lemma 3.3: Let $(f, \alpha)(X, \mu) \rightarrow (Y, \eta)$ be a fuzzy group homomorphism and let

$$(X,\mu) \xrightarrow{(f_1,\alpha_1)} (I,\xi) \xrightarrow{(u,s)} (Y,\eta)$$

be a factorization of (f, α) through its image

 $(u, s): (I, \xi) \to (Y, \eta)$. Then (f_1, α_1) is an epimorphism.

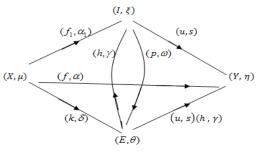
proof. Let $(g_1, \beta_1), (g_2, \beta_2): (I, \xi) \to (C, \tau)$ be fuzzy group homomorphism such that $(g_1, \beta_1)(f_1, \alpha_1) = (g_2, \beta_2)(f_1, \alpha_1)$ (7) Let $(h, \gamma): (E, \theta) \to (I, \xi)$ be the equalizer for (g_1, β_1) and (g_2, β_2) [This exists by [4]]



Then $(g_1, \beta_1)(h, \gamma) = (g_2, \beta_2)(h, \gamma)$ (8) Now from (1) and the definition of an equalizer there exists a unique fuzzy group homomorphism

 $(k, \delta): (X, \mu) \to (E, \theta) \text{ such that}$ $(h, \gamma) (k, \delta) = (f_1, \alpha_1)$ (9) Hence $(u, s)(h, \gamma)(k, \delta) = (u, s)(f_1, \alpha_1) = (f, \alpha)$ (10) Thus (f, α) factors through (E, θ) .

Therefore by the definition of an image, there exists a unique fuzzy group homomorphism $(p, \omega): (I, \xi) \rightarrow (E, \theta)$ such that $(u, s) (h, \gamma)(p, \omega) = (k, s)$



This implies that $(h, \gamma)(p, \omega) =$ identity on (I, ξ) (11) Now from (2) $(g_1, \beta_1)(h, \gamma) = (g_2, \beta_2)(h, \gamma)$ $\Rightarrow (g_1, \beta_1)(h, \gamma)(p, \omega) = (g_2, \beta_2)(h, \gamma)(p, \omega)$

IJSER © 2015 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN 2229-5518

 $\Rightarrow (g_1, \beta_1) = (g_2, \beta_2) \text{ by (5)}$

Hence $(f_1, \alpha_1): (X, \mu) \to (I, \xi)$ is an epimorphism. **Proof of the Theorem.** From 3.2 and Lemma 3.3, it follows that \mathcal{F} has epimorphic images.

Remark 3.4: We can prove that any two images are isomorphic fuzzy groups. Hence for practical purposes the image of $(f, \alpha) : (X, \mu) \rightarrow (Y, \eta)$ will be taken as $(f(X), \eta_1)$ where η_1 is the restriction of η .

Theorem 3.5: The category of fuzzy groups has inverse images.

Proof.

Let
$$P = \{ \begin{array}{c} x \in X \\ f(x) \in u(Z) \end{bmatrix}$$

Then P is a subgroup of X. For if $x_1, x_2 \in P$ and

$$\begin{aligned} x_1 &= u(z_1), x_2 = u(z_2) \text{ where } z_1, z_2 \in Z \text{ , then} \\ x_1 x_2^{-1} &= u(z_1)(u(z_2))^{-1} = u(z_1)u(z_2^{-1}) \\ &= u(z_1 \ z_2^{-1}) \in u(Z) \end{aligned}$$

so that $x_1, x_2^{-1} \in P$ and hence *P* is a subgroup of X.

Define $\epsilon: P \to [0, 1]$ as $\epsilon(x) = \mu(x)$, for all $x \in P$, that is $\epsilon = \frac{\mu}{P}$. Then (P, ϵ) is a fuzzy subgroup of (X, μ) .

Consider $(i_P, i_{\epsilon(P)}): (P, \epsilon) \to (X, \mu)$. From the definition of ϵ , we see that for all $x \in P$, $\mu i_P(x) = \mu(x) = \epsilon(x) = i_{\epsilon(P)}\epsilon(x)$ so that $\mu i_P = i_{\epsilon(P)}\epsilon$. Hence $(i_P, i_{\epsilon(P)}): (P, \epsilon) \to (X, \mu)$ is a fuzzy group homomorphism.

Moreover since $i_{\epsilon(P)}$: $\epsilon(P) \rightarrow \mu(X)$ is injective.

 $(i_P, i_{\epsilon(P)}): (P, \epsilon) \to (X, \mu)$ is a fuzzy subgroup. Next we define a fuzzy group homomorphism $(p_1, \beta_1): (P, \epsilon) \to (Z, \theta)$ as follows.

Now $x \in P \Rightarrow f(x) = u(z)$ for some $z \in Z$ (by definition of *P*).

Moreover $u(z_1) = u(z_2) \implies z_1 = z_2$ since u is injective. Thus $x \in P \implies$ there is a unique $z \in Z$ such that f(x)=u(z).

Define
$$p_1(x) = z$$
 if $f(x) = u(z)$ (12)
Again $x \in P \Rightarrow f(x) = u(z), z \in Z$
 $\Rightarrow \eta f(x) = \eta u(z)$
 $\Rightarrow \alpha \mu(x) = \eta u(z)$ [since $\alpha \mu = \eta f$]
 $\Rightarrow \alpha \epsilon(x) = \eta u(z)$ [since $\epsilon = \frac{\mu}{p}$]
 $\Rightarrow \alpha \epsilon(x) = \delta \theta(z)$ [since $\eta u = \delta \theta$]
Also $\delta \theta(z_1) = \delta \theta(z_2) \Rightarrow \theta(z_1) = \theta(z_2)$ (since (u, δ)

IJSER © 2015 http://www.ijser.org

is a fuzzy subgroup $\Rightarrow \delta$ is injective)

Thus given $x \in P$, there is a unique $\theta(z) \in \theta(Z)$ (z need not be unique) such that

$$\alpha \epsilon(x) = \delta \theta(z).$$
Define $\beta_1: \epsilon(P) \to \theta(Z)$ as $\beta_1 \epsilon(x) = \theta(z)$ if

$$\alpha \epsilon(x) = \delta \theta(z)$$
(13)

Claim 1. (p_1, β_1) : $(P, \epsilon) \rightarrow (Z, \theta)$ is a fuzzy group homomorphism.

Now for all $x \in P$, $\theta p_1(x) = \theta(z)$ where f(x)=u(z) [by (12)]

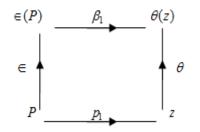
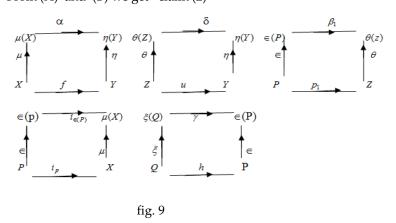


fig. 8

Also $\alpha \epsilon(x) = \delta \theta(z)$ so that $\beta_1 \epsilon(x) = \theta(z)$ by (2) Hence $\theta p_1(x) = \theta(z)$ where f(x) = u(z) from (3). Thus for all $x \in P$, $\beta_1 \epsilon(x) = \theta P_1(x)$ so that $\beta_1 \epsilon = \theta P_1.$ Hence the claim 1 Claim 2. $(u, \delta)(p_1, \beta_1) = (f, \alpha)(i_P, i_{\epsilon(P)})$ Now for all $x \in P$, $up_1(x) = u(z)$, if f(x) = u(z) by (1) = f(x) $= f i_P(x)$ $\Rightarrow u p_1 = f i_P$ Also for all $x \in P, \delta\beta_1 \epsilon(x) = \delta\theta(z)$ (A) where $\beta_1 \epsilon(x) = \theta(z)$ if $\alpha \epsilon(x) = \delta \theta(z)$ by (2) Hence $\delta\beta_1\epsilon(x) = \delta\theta(z)$ $= \alpha \epsilon(x)$ $= \alpha i_{\epsilon(P)} \epsilon(x)$ for all $x \in P$. Therefore $\delta\beta_1 = \alpha i_{\epsilon(P)}$ (B) From (A) and (B) we get claim (2)

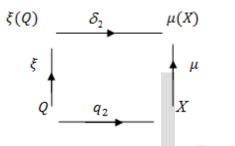


International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 ISSN 2229-5518

Suppose there exists
$$(q_1, \delta_1) : (Q, \xi) \to (Z, \theta)$$
 and
 $(q_2, \delta_2) : (Q, \xi) \to (X, \mu)$ such that
 $(u, \delta)(q_1, \delta_1) = (f, \alpha)(q_2, \delta_2)$ (14
We define $(h, \gamma) : (Q, \xi) \to (P, \epsilon)$ as follows
Let $t \in Q$. Then $q_2(t) \in X$ and $q_1(t) \in Z$ such
that $fq_2(t) = uq_1(t) \in u(z)$.
Hence $q_2(t) \in P$ (by definition of P) and
 $p_1q_2(t) = q_1(t)$ by definition of p_1 .
Define $h: Q \to P$ as $h(t) = q_2(t)$ (15)
Also define $\gamma : \xi(Q) \to \epsilon(P)$ by
 $\gamma\xi(t) = \delta_2\xi(t) t \in Q$
Hence claim 2.

Claim 3 :

 γ is well defined. (that is we have to prove that $\delta_2 \xi(t)$ belongs to P)



Now for all $t \in Q$, $\delta_2 \xi(t) = \mu q_2(t)$ [since $\delta_2 \xi = \mu q_2$] = $\epsilon q_2(t)$ [since $q_2(t) \in P$ and $\epsilon = \mu/p$ and so $\delta_2 \xi(t)$ belongs to $\epsilon(P)$ [since $q_2(t) \in P$] Thus γ is well defined. Moreover for all $t \in Q$ $\gamma\xi(t) = \delta_2\xi(t)$ $= \mu q_2(t)$ [since $(q_2, \delta_2) : (Q, \xi) \rightarrow (X, \mu)$ is a fuzzy group homomorphism] $=\epsilon \hat{q}_2(t)$ [since $q_2(t) \in P$ and $\epsilon = \frac{\mu}{P}$] = $\epsilon h(t)$ [by definition of h) Hence $\gamma \xi = \epsilon h$ so that $(h, \gamma) : (Q, \xi) \to (P, \epsilon)$ is a fuzzy group homomorphism. Finally by definition of h and γ we have $i_P h = q_2$ and $i_{\epsilon(P)} \gamma = \delta_2$ so that $(i_P, i_{\epsilon(P)})(h, \gamma) = (q_2, \delta_2)$ (16)Claim 4: $(p_1, \beta_1)(h, \gamma) = (q_1, \delta_1)$ Now for all $t \in Q$, $p_1 h(t) = p_1 q_2$ ((by definition of h) $= q_1(t)$ and hence $n_1 h = a_2$ (17)

Also for all
$$t \in Q$$
, $\beta_1 \gamma(\epsilon(t)) = \beta_1 \delta_2(\epsilon(t))$ (18)

and
$$\delta\beta_1\delta_2(\epsilon(t)) = \alpha i_{\epsilon(P)}\delta_2(\epsilon(t))$$

[since $\delta\beta_1 = \alpha i_{\epsilon(P)}$]

$$= \alpha \delta_2(\epsilon(t)) = \frac{\delta \delta_1(\epsilon(t))}{[\text{ since } \delta \text{ is injective }]}$$

[since δ is injective] 4) We conclude that $\beta_1 \delta_2(\epsilon(t)) = \delta_1(\epsilon(t))$ (19) From (7) and (8) we conclude that $\beta_1 \gamma(\epsilon(t)) = \delta_1(\epsilon(t))$ (Since δ is injective)

In other words
$$eta_1\gamma=\delta_1$$

Thus the category of fuzzy groups has inverse images. **Note 3.6:**

As in any category we can prove that any two images / inverse images are isomorphic.

Remark 3.7: Since any two inverse images can be proved to be isomorphic fuzzy groups, from the construction in proposition 3.1.23. it follows that the inverse image of a fuzzy subgroup $(i_{a}, i_{a}, y_{a}): (Z, n') \rightarrow (Y, n)$ by

group $(i_z, i_{\mu'(z)}): (Z, \eta') \to (Y, \eta)$ by $(f, \alpha): (X, \mu) \to (Y, \eta)$ can be taken as $(f^{-1}(Z), \mu')$ where $f^{-1}(z) = \{x \in X \text{ given } f(x) \in Z\}$ (set theoretic inverse image) and μ' is the inclusion.

REFERENCES

 L.A. Zadeh, Fuzzy sets, Information and control, 1965, 8: 338 - 353.
 J.M. Anthony and Sherwood, Fuzzy Groups Redefined, Journal of Mathematical Analysis and Applications 69, 124-130 (1979).

[3] Azriel Rosen Feld, Fuzzy Groups, Journal of Mathematical Analysis and Applications 35, 512-517 (1971).

 [4] P.Vijayalakshmi, P. Geetha, A. Kalaivani, Category of Fuzzy Groups, Two day International conference on Algebra and its Applications (December 14 and 15 2011, Pp 337-343).

[5] George Boj Adziev And Maria Boj Adziev Fuzzy Sets, Fuzzy Logic, Applications, Advances in Fuzzy Systems-Applications

and Theory, Vol5, World Scientific Publishing Company, 1995.

[6] Horst Schubert, Categories, Springer-Verlag, Berlin Heidelberg Newyork 1972.

(20)

USER © 2015 http://www.ijser.org